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Abstract
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification
of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-
chlorophyllin (Cu-CHL), a Cu2þ-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological
membranes and liposomes. Hemin (Fe3þ-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid
peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin
action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL)
were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation
by hemin in presence of H2O2 was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively
inhibiting LDL oxidation initiated by transition metal ions (Cu2þ), human umbilical vein endothelial cells (HUVEC) and
tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H2O2 and tyrosine. Cu- and Mg-CHL showed radical
scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl
radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind
to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog
could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects
of the CHLs were found at concentrations as low as 1mmol/l, which can be achieved in humans, the results may be
physiologically/therapeutically relevant.
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Introduction

The oxidative modification of LDL particles may

play a pivotal role in early stage atherogenesis

[1–4]. This observation has led to studies focusing

on the mechanisms of LDL oxidation and on the

antioxidant potential of drugs or naturally occurring

compounds. In vitro, LDL oxidation can be induced

by transition metal ions (Fe, Cu), reagent hypo-

chlorite, superoxide/nitric oxide, azocompounds,
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vascular cells and peroxidases [5–14]. In addition

to myeloperoxidase (MPO), an enzyme secreted by

activated phagocytes, which can generate tyrosyl

and NO2 radicals [15–17], hemoglobin and hemin

have also been identified as possible candidates of

in vivo LDL alterations. Hemin is a Fe3þ-

protoporphyrine IX complex, which binds to LDL

and induces LDL oxidation in presence of H2O2 or

lipid hydroperoxides present in LDL [18–26]. The

structurally related Cu2þ-protoporphyrine IX com-

plex, copper chlorophyllin (Cu-CHL) has been

found to have antioxidant potential, as studied in

liposomes and isolated mitochondrial membrane

systems [27,28] exposed to gamma radiation.

Assuming that chlorophyllin may compete with the

hemin/LDL interaction due to its similar chemical

structure (see Scheme 1), we have tested Cu-CHL

and its parent compound magnesium-chlorophyllin

(Mg-CHL) in their ability to inhibit LDL oxidation

induced by hemin. The influence of both chloro-

phyllins on other established LDL oxidizing systems

like transition metal ion dependent (Cu2þ), endo-

thelial cell and tyrosyl radical mediated LDL

oxidation were also studied.

Materials and methods

Hemin, Copper-chlorophyllin (Cu-CHL), diphenylpi-

crylhydracylradical (DPPH), ebselen (2-Phenyl-1,2-benz-

isoselenazol-3(2H)-one), pyrogallol, tyrosine-sodium

saltwere fromSigmaChemicals.Mg-CHLwasagenerous

gift of Paninkret, Germany. Myeloperoxidase (MPO, EC

1.11.17, purity .95% as assessed by SDS gel

electrophoresis) was purchased from Calbiochem-Nova-

biochem International. Hemin was dissolved in 20mmol/l

NaOH and further diluted in phosphate buffered saline

(PBS) pH 7.4. Daily hemin and chlorophyllin solutions

were prepared fresh and kept under light protection

until use.

Lipoprotein isolation

LDL and HDL were isolated by ultracentrifugation as

reported previously [29]. The final preparations were

dialyzed against 150 mmol/l NaCl containing

0.1 mmol/l EDTA and filter sterilized. Protein was

estimated by [30] using bovine serum albumin as

a standard. All LDL and HDL concentrations are

given as mg protein/ml.

LDL oxidation

Prior to LDL oxidation, the lipoprotein was equili-

brated in phosphate buffered saline pH 7.4 (PBS)

using Sephadex G-25 chromatography (PD-10 col-

umns, Pharmacia).

Hemin induced oxidation

LDL (0.2 mg/ml PBS) was incubated in the presence

of 2.5mmol/l hemin and 40mmol/l H2O2 at 378C for

the indicated time.

Copper ion induced oxidation

LDL (0.2 mg/ml PBS) was incubated in the presence

of 5mmol/l Cu2þ at 378C for the indicated time.

Endothelial cell mediated oxidation

Human umbilical vein endothelial cells (HUVEC)

were isolated, cultured and used for cell mediated

LDL oxidation as reported previously [31,32]. LDL

concentration was 0.1 mg/ml RPMI medium and

oxidation time was 18 h.

Tyrosyl radical (MPO) mediated oxidation

LDL (0.2 mg/ml) in 0.05 mol/l phosphate buffer pH

7.5 containing 0.1 mmol/l DTPA and MPO (3 nmol/l)

was incubated in the presence of H2O2 (40mmol/l)

and tyrosine (50mmol/l) as substrate [15] at 378C for

the indicated time.

Estimation of lipid oxidation

Conjugated diene. Lipid oxidation in LDL

was analyzed by monitoring conjugated diene

formation as the increase in absorbance at 234 nm

(1 ¼ 2.95 £ 104 M21 cm21) [33] using a Hitachi

U-2001 spectrophotometer with thermostated 6-cell

cuvette positioner.

Malondialdehyde formation. Malondialdehyde

formation was estimated as reported recently [34]

using 1 ¼ 15.6 £ 104 M21 cm21 for calculation and

were expressed as TBARs equivalents.

Lipid hydroperoxides. Lipid hydroperoxides were

estimated as reported previously using the CHOD

iodine reagent [35].

Scheme 1.

S. Kapiotis et al.1194
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Binding of hemin and chlorophyllins to lipoproteins

in serum

Serum was diluted in PBS 1:5 and incubated with

hemin or the respective chlorophyllin (all 125mmol/l)

in the presence of 10mmol/l BHT for 15 min at room

temperature. (2 ml total volume). Subsequently

the samples were subjected to KBr gradient

ultracentrifugation [18]. Cholesterol in the fractions

(0.4 ml) was estimated by a commercially available

automated method on an Integra 700 analyzer (Roche

Diagnostics) and distribution of the respective Cu2þ,

Fe3þ and Mg2þ-porphyrines by monitoring the

absorbance at 405 nm. Moreover, binding of the

colored compounds to LDL and HDL was docu-

mented photographically. In separate experiments

whole serum was incubated with the respective

chlorophyllin (125mmol/l) and subjected to KBr

gradient ultracentrifugation and the LDL fractions

isolated. Subsequently KBr was removed by

gel filtration and the isolated lipoprotein

subjected to lipid oxidation as indicated in the figure

legends.

Binding of hemin and chlorophyllins to isolated

lipoproteins

LDL or HDL (both 0.5 mg/ml) was incubated in the

absence or presence of hemin, Cu-CHL or Mg-CHL

(100 or 50mmol/l) for 30 min at room temperature.

20mmol/l BHT and 20mmol/l EDTA was added to

avoid lipoprotein oxidation during incubation. Sub-

sequently 15mg of the respective lipoprotein was

subjected to agarose gel electrophoresis (100 V,

30 min). Lipoproteins were stained with Coomassie

blue. Binding of the compounds to the lipoproteins

was indicated by the alteration of the relative

electrophoretic mobility (REM) [18].

DPPH radical scavenging assay

Radical scavenging ability of the chlorophyllins was

estimated following the procedure as published

previously [36] using pyrogallol as a positive radical

scavenging control.

Phenoxyl radical-mediated diphenyl (dityrosine)

formation

Diphenyl formation was estimated spectroscopically as

previously reported [37]. In brief, tyrosine (1 mmol/l) in

50 mmol/l phosphate buffer containing 100mmol/l

DTPA pH 7.5 was incubated with 100mmol/l H2O2

and 10 nmol/l MPO at 258C for 1 h. Spectra were

recorded between 400 and 280 nm. Radical induced

diphenyl (dityrosine) formation was indicated as the

increase in absorbance at 320 nm [38].

Octanol/water partition of chlorophyllins

A measure of 1 ml of Cu- or Mg-CHL (50mmol/l PBS)

was extracted with 1 ml octanol at 258C by vortexing for

15 s and phases were separated by centrifugation at

3000 rpm for 10 min. The concentration of the

respective CHL was measured spectrophotometrically

(at their absorbance maxima) in the water phase before

and after extraction.

Tissue factor activity assay

Tissue factor (TF) assay for the quantification of the

procoagulant activity of the endothelial cells was

performed as previously described [31]. After

incubations, cells were scrape-harvested and washed

three times with PBS. Cells suspended in 500ml PBS

were then sonicated by a cell disruptor (Labsonic U,

B. Braun Biotech International) for 15 s at 48C. The

cell lysate was then assayed in a one stage clotting

assay for procoagulant activity: 50ml citrated normal

donor platelet-poor plasma were incubated for 1 min

with 50ml of cell lysate at 378C in prewarmed plastic

tubes of a ST-4 coagulometer (Stago); 50ml CaCl2
(30 mmol/l) were then added and the coagulation

time was measured. Control experiments were

performed with factor VII- (Sigma), IX- (Techno-

clone), and X (Biopool) -deficient plasmas to

characterize the procoagulant activity measured as

TF activity.

Statistical analysis

Data were calculated as means ^ standard deviation

(SD) of 2 to 5 experiments. Specific effects were

evaluated by one-way analysis of variance (ANOVA)

plus Tukey-Kramer Multiple Comparisons Test.

p , 0.05 was regarded statistically significant.

Results

Cu-or Mg-CHL tested at the highest concentration

(5mmol/l) did not induce any lipid oxidation in the

presence of H2O2 (not shown). Figure 1A and B

depict the kinetics of LDL oxidation induced by

hemin in presence of H2O2. A rapid increase in

conjugated diene formation was observed. When LDL

was pre-incubated with CHLs for 10 min and

subsequently the oxidation reaction was initiated by

hemin/H2O2 the highest Cu-CHL concentrations

(5 and 2.5mmol/l) exerted a highly significant

( p , 0.001) inhibitory action on hemin mediated

lipoprotein oxidation over the entire time measured.

A measure of 1.25mmol/l led to a highly significant

( p , 0.001) inhibition up to 45 min. As low as

0.625mmol/l Cu-CHL still significantly inhibited

LDL oxidation up to 30 min ( p , 0.05) (Figure 1A).

At this concentration, lag time increased 20-fold

compared to control. Mg-CHL exerted highly

Chlorophyllins inhibit LDL oxidation 1195
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significant ( p , 0.001) inhibition at 5mmol/l over the

whole time range. At the end of the incubation period,

still significant ( p , 0.05) inhibition at 2.5mmol/l was

found. A measure of 1.25 and 0.625mmol/l signifi-

cantly inhibited lipid oxidation up to 24 and 12 min,

respectively ( p , 0.05 and p , 0.001) (Figure 1B).

Corresponding lag-times were increased 4-, 6-, 10-

and 19-fold compared to control. Comparing the

potency of Cu-CHL and Mg-CHL on the basis of lag-

time increase, Cu-CHL is about 5 times more effective

in inhibiting hemin-induced LDL oxidation.

As the LDL anti-oxidative activity of a compound

can also depend on its lipophilic/hydrophilic proper-

ties, we compared Cu- and Mg-CHL with respect to

their octanol/water partition. The results show that

Cu-CHL is 2.7-fold (n ¼ 5, p , 0.0001) more

lipophilic than Mg-CHL.

When LDL was pre-incubated with hemin

(2.5mmol/l) for 10 min followed by Cu-CHL and

LDL oxidation was started by the addition of reagent

H2O2, the compound (5mmol/l) still showed strong

antioxidant activity (not shown). Hemin binding to

lipoproteins (LDL and HDL) and albumin in serum

has been reported [18,19]. Thus we have analyzed the

distribution of Cu-CHL and Mg-CHL in comparison

to hemin in serum following the protocol of [18].

The visual inspection of the gradients revealed two

main colored bands in the lipoprotein region and one at

the bottom of the tube (Figure 2A). Figure 2B shows

that Cu-CHL and Mg-CHL like hemin can bind to the

serum lipoproteins LDL and HDL (and other

proteins). Data of three different subjects are depicted.

Binding of hemin and the chlorophyllins to isolated

LDL and HDL was also estimated by agarose gel

electrophoreses as indicated by an increase in REM of

the particles (Figure 2C). When LDL was isolated

from Cu-CHL or Mg-CHL pre-incubated whole

serum, these preparations showed less sensitivity to

hemin/H2O2-induced LDL oxidation (Figure 3). The

transition metal ion (i.e. copper ion) mediated

oxidation is a widely used system to study antioxidant

compounds [33]. The results in Figure 3 indicate that

Cu- and Mg-CHL are also antioxidants in copper-ion

induced LDL oxidation. Cu-CHL has been shown to

scavenge radicals [39]. In this respect, Mg-CHL in

comparison to Cu-CHL showed also radical (DPPH)

scavenging activity—although to a lesser extent (see

Figure 4). MPO in presence of H2O2 and tyrosine can

generate tyrosyl radicals initiating lipid oxidation in

LDL [14]. When the chlorophyllins were present in the

MPO/H2O2/tyrosine/LDL oxidizing system both

chlorophyllins (5mmol/l) inhibited tyrosyl radical-

mediated LDL oxidation (results not shown). Tyrosyl

(phenoxyl) radicals beside their ability to initiate lipid

oxidation can form dityrosine via radical–radical

reactions (diphenyl formation) [13,38]. When dityr-

osine formation was monitored in presence of Cu- or

Mg-CHL both chlorophyllins (5mmol/l) showed

inhibitory action on diphenyl (dityrosine) formation

(Figure 5). Vascular cells (endothelial cells or smooth

muscle cells) have the potential to oxidize LDL [40].

Using HUVECs as a model system of cell-mediated

LDL oxidation, the results indicate that both chlor-

ophyllins are effective inhibitors of endothelial cell-

mediated LDL oxidation (see Figure 6).

In endothelial cells TF activity can be induced by

oxidized LDL [41]. When LDL was oxidized by

HUVEC and TF activity in cell lysates was measured

by a one stage clotting assay, both chlorophyllins were

able to counteract TF activity induction by

EC-oxidized LDL. Under the conditions employed

both Mg- and Cu-CHL showed TF antagonizing

potential (Figure 6).

Discussion

LDL oxidation may play a central role in the onset of

atherosclerosis [3,42,43]. Thus experimental and

Figure 1. Influence of copper- (A) or magnesium- (B) chlorophyllin

on hemin induced LDL oxidation. LDL (0.2 mg/ml PBS) was

incubated in the absence or presence of Cu- or Mg-CHL and

2.5mmol/l hemin and 40mmol/l H2O2 at 378C and lipid oxidation was

measured as the increase in conjugated diene formation as given under

“Materials and methods” section. Control:B; 5mmol/l CHL:O;

2.5mmol/l CHL:W; 1.25mmol/l CHL:K; 0.625mmol/l CHL:†.

Means ^ SD are given (n ¼ 5).

S. Kapiotis et al.1196
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Figure 2. Binding of hemin and CHLs to lipoproteins in serum (A, B) and isolated lipoproteins (C). A: Three different human sera

were incubated with hemin or the respective CHL and subjected to KBr gradient ultracentrifugation. A: Visual distribution of the

compounds in serum. B: Binding of hemin, Cu-CHL and Mg-CHL to lipoproteins (measured as cholesterol) was estimated as

described in “Materials and methods” section. C: LDL or HDL (both 0.5 mg/ml) was incubated in the absence or presence of the

respective compound (100 or 50mmol/l) under the conditions given in “Materials and methods” section. Binding of the compounds was

indicated by alteration of the relative electrophoretic mobility. 1: Control; 2: Hemin (50mmol/l); 3: Hemin (100mmol/l); 4: Cu-CHL

(50mmol/l); 5: Cu-CHL (100mmol/l); 6: Mg-CHL (50mmol/l); 7: Mg-CHL (100mmol/l); 8: Control.

Chlorophyllins inhibit LDL oxidation 1197
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Figure 3. Lipid oxidation in LDL isolated from serum pre-incubated with Cu-CHL or Mg-CHL. A: Hemin/H2O2 induced LDL oxidation.

B: Copper ion-induced LDL oxidation. Whole serum was incubated with or without CHLs (125mmol/l) for 15 min and LDL was isolated by

ultracentrifugation as given in “Materials and methods” section. LDL (0.2 mg/ml) was oxidized in presence of 2.5mmol/l hemin/40mmol/l

H2O2 or 5mmol/l Cuþþ at 378C. Control:B. Mg-CHL:K. Cu-CHL:W.

Figure 4. DPPH radical scavenging ability of Cu-CHL or Mg-CHL. Cu-CHL or Mg-CHL were added to a solution of DPPH radical

(50mmol/l). After 10 min the decrease in absorption at 517 nm was taken as indicator of radical scavenging ability. Pyrogallol was used as a

positive control. Pyrogallol:W. Cu-CHL:B. Mg-CHL:O.

S. Kapiotis et al.1198
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clinical investigations focused on the action and

protective effect of natural and synthetic antioxidative

compounds. Although, a “Janus-faced” action i.e.

anti- and pro-oxidative action of these compounds can

not be ruled out as recently stressed by Halliwell [44].

Cu-CHLs have been especially identified as potent

anticancerogenic substances [45–48] and in addition

as compounds with antioxidant activity in liposomal

and biological membrane systems (mitochondria)

exposed to various radical generating reactions

[27–29]. Cu-CHL is the copper-sodium salt and

water-soluble analog of chlorophyllin. Cu-CHL is

widely used as food coloring agent, health food

additive, supporter of wound healing and control of

fecal and urinary odor in colostomy patients [49].

Therapeutic levels of about 3mmol Cu-CHL/l plasma

without any toxic effects have been reported in the

study of Egner et al. [46]. The antimutagenic [50],

antigenotoxic [51] and anticarcinogenic [52] activity

of the compound may be attributed to the ability of

CHL to form tight complexes with the respective

mutagenic, carcinogenic or genotoxic molecules. Due

to their hydrophobic and negatively charged por-

phyrin ring system these compounds may bind to

serum lipoproteins like LDL and HDL, as has been

demonstrated for hemin, which has a similar

porphyrin ring system [18,19]. Thus one may

speculate that chlorophyllins may have the potential

to act as antioxidants in reactions initiating LDL

oxidation especially by hemin. In accordance to these

observations the present results show that copper- and

Mg-CHL are potent antioxidative compounds in LDL

oxidation reactions induced by hemin. In addition, the

CHLs inhibited the transition metal ion, tyrosyl

radical and endothelial cell mediated LDL oxidizing

systems. In the present study as low as 1mmol/l

chlorophyllin showed inhibitory action on LDL

atherogenic modification, a concentration which is

well in the range achievable in humans after oral

uptake [50]. Mg-CHL in all systems showed slightly

less antioxidant activity which might be due to its

lower lipophilicity (measured as Octanol/water par-

tition) compared to Cu-CHL. In the MPO catalyzed

LDL oxidation reaction which depends on H2O2 and

tyrosine, both chlorophyllins were found to inhibit

lipid oxidation. This may be due to scavenging

(repairing) the tyrosyl radical or inhibiting MPO as

indicated by reduced dityrosine formation. The

copper ion mediated LDL oxidation may be inhibited

by complexing Cu2þ by the porphyrin ring system via

the carboxylic acid residues. It should be noted that

Cu-CHL and Mg-CHL could also suppress lipopro-

tein lipid oxidation during the propagation phase.

Hence, the chlorophyllins may have chain-breaking

ability in addition to their inhibitory action on the

initiation reaction of lipid oxidation. On the other

hand, the central copper in Cu-CHL may be redox-

active. Thus the compound may act by an electron-

transfer mechanism by quenching the activated

heme—presumably an oxo-ferryl heme porphyrin

radical cation—or protect LDL by scavenging lipid

radicals.

TF plays a role in the late phase of atherosclerosis

(i.e. in thrombus formation of ruptured atherosclero-

tic plaques) and oxidized LDL has been shown to

induce TF activity [41]. Using a functional assay, we

demonstrated that the chlorophyllins—due to their

antioxidative effects—could counteract TF activity

induction by oxidized LDL.

It should be kept in mind that not all antioxidants

that inhibit LDL oxidation in vitro are necessarily

effective also in vivo [53]. In this respect Upston et al.

have shown that LDL oxidation in the sub-

endothelial space apparently takes place in the

presence of vitamin E which is an effective antioxidant

in vitro.[54,55]

In summary, the results show that the chlorophyl-

lins are potent antioxidants in LDL oxidizing systems

like hemin, transition metal ions, endothelial cells, and

Figure 5. Influence of Cu-CHL (A) or Mg-CHL (B) on dityrosine

formation. Phenoxyl radical-mediated dityrosine (diphenyl)

formation in absence or presence of CHLs (5mmol/l) was

followed spectroscopically as given in “Materials and methods”

section. Tyrosine/MPO/H2O2: ____; tyrosine/H2O2: . . .. . .;

Tyrosine/MPO/H2O2 þ CHL: – – – –-.

Chlorophyllins inhibit LDL oxidation 1199
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MPO catalyzed reactions. Our results obtained with

isolated human LDL support the findings of [56] who

found less atherosclerotic alterations in vessel walls of

rats receiving an atherosclerotic diet in presence of

Cu-CHL.
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